AI and Human Health

Knowledge Keeper: Rachel Bergman – Bergman.138@osu.edu

Table Guide: Sam Grevas – Grevas.3@osu.edu

Participants:

Naleef Fareed	Biomedical Informatics	Naleef.Fareed@osumc.edu
Maciej Pietrzak	BMI	Pietrzak.20@osu.edu
Shareef Dabdoub	Dentistry	dabdoub.2@osu.edu
Raghu Machiraju	TDAI/CSE/BMI/PATH	Machiraju.1@osu.edu
José J. Otero	Pathology/COM	Jose.Otero@osumc.edu
Don Hong	Tech Commercialization Office	Hong.923@osu.edu
Colin Odden	Government Resource Center	Colin.Odden@osumc.edu

Asset(s):

Don Hong – Tech Commercialization Office

- Electrical Engineering/Computer Science
- Connections across University → facilitate collaborations
- Encourage submissions for commercialization disclosures

Naleef Fareed – Biomedical Informatics

- Access to experts in patient engagement, clinical data, data visualization
- Interdisciplinary data

Maciej Pietrzak - Biomedical Informatics

- Can provide space for meetings
- Bring problems to solve
- Interface with multiple groups on campus
- Work to deliver results in an easy to understand way

Shareef Dabdoub – Dentistry

- Access to patient population in dental school
- Data visualization, big data, analytics
- Figure out what we can do with data

Raghu Machiraju – TDAI/CSE/BMI/PATH

- Joint analysis in imaging, pathology, omics
- Connections at high level across the University
- Image analysis, machine learning
- Access to many kinds of data

José Otero – Pathology/COM

- Transgenetic mouse studies
- Machine Learning
- Anatomy, physiology studies
- Digital pathology
- International connections, especially Brazil
- Access to underrepresented/underserved sample of patients Mississippi

Colin Odden – Government Resource Center

- Relationships with OSUWMC IT, College of Medicine IT, Chief Information Officer → rapport with infrastructure to expedite implementation of ideas
- Consulting on underserved populations
- Connections with data visualization people
- Connections to State of Ohio agencies use state data

Link and Leverage:

- Naleef works on some of Colin Projects Medicaid populations, underserved populations could use machine learning to refine data → expedite process from idea to implementation
- José and Raghu collaborate Raghu connect to omics data people
- Colin can help José connect to Ohio Department of Health infant mortality/SIDS data
- Colin has connections for platforms and storage of large amounts of research data Shareef identified this as a problem
- Group discussed "What problem in healthcare do we want to solve with machine learning?"
 - Need for interpretable AI: input \rightarrow output

Opportunity	Description
Utilize digital pathology, clinical data, radiology, etc to provide genomic signature \rightarrow more accurate diagnosis and prognosis for cancer and reduce costs of molecular testing	 Connect imaging phenotypes to genotypes Find proxies to save costs for certain tests
Use clinical/physiological data to predict respiratory suppression → link to opioid deaths [Feasibility Study]	 Proceptive way to predict opioid dependency/deaths at the intervention level Wearable way (watch?) to measure physiological factors and/or utilize electronic health records

Rate Opportunities:

Opportunity	Impact	Ease	/total
Pathology Clinical Decisions Support	4,4,5,5,5,5,4 = 32	3,3,4,4,3,3,3 = 23	55
	· · ·	·	

Wearable, Integrated Health Tool for	5,4,5,3,4,5,5 = 31	3,2,2,1,2,1,2 = 13	44
Predicting Opioid Outcomes			

<u>"Big Easy</u>:

Strategic Opportunity	Characteristic	Success Metric
Pathology Clinical Decisions Support	More accurate genomic testing	 Sensitivity, Specificity of testing Positive Predictive Value
	Quicker clinical decisions → Interventions for patients sooner	
	Financially efficient, reduce costs	Financial Analysis

Pathfinder Project:

Pathfinder Project	Guideposts	By When
Feature/Data Extraction	Feature Identification	October 15 th
	Obtain letters of support from different centers/institutions (research partners)	By time RFA is due
	Decide which cancer direction to take: glioma and/or sarcoma	By time RFA is due

Action Plan:

Raghu	Look for data of sarcomas	October 15 th
José	Look for data on gliomas	October 15 th
Everyone	Understand/clarify hypothesis	

Follow-Up Meeting:

• End of September – José's assistant will send out doodle poll