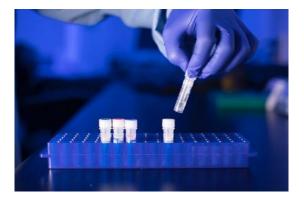


Automation of Rapid Whole Genome Sequencing (rWGS) – The Need for Speed

Shimul Chowdhury, PhD, FACMG Clinical Laboratory Director, Rady Children's Institute for Genomic Medicine No conflict of interest

- Informed consent was obtained for this research
- Patient and parent photos, videos, and names are used with their permission

RCIGM – Who are we?



Mission: To prevent, diagnose, treat and cure childhood diseases through genomic and systems medicine research.

Clinical Genome Center

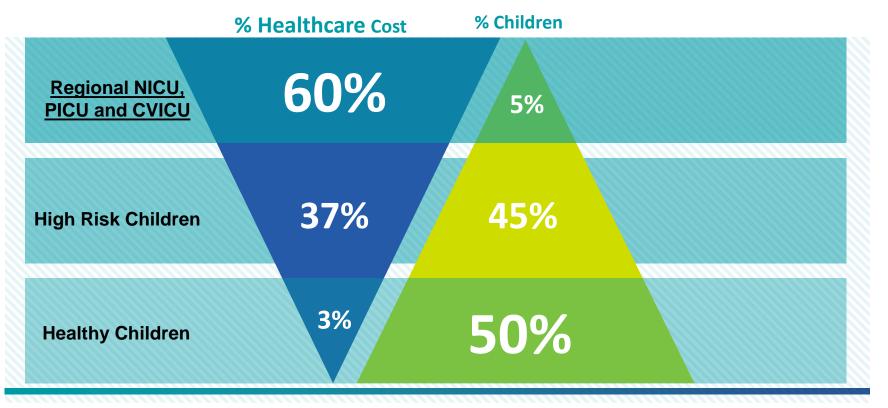
CLIA certification April 2017 CAP accreditation Sept. 2017

Rare diseases are predominantly caused by <u>Genomic</u> <u>Variation</u> and result in dire consequences for patients

Rady Children's Institute Genomic Medicine

Rare disease: 1 in 2,000 affected

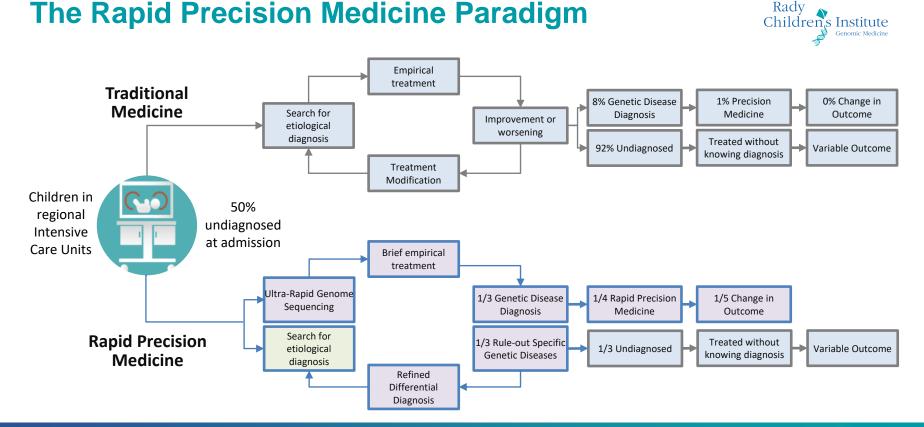
Ultra-rare disease: 1 in 50,000 affected


Rare diseases affect over 30 million patients in the US

Sources: 1. The Personalized Medicine Report. Personalized Medicine Coalition. 2017. 2. Accelerating Rare Disorder Patient Identification to Drive Orphan Drug Adoption. PerkinElmer. 3. Orphan Drug Sales to Reach \$262 Billion by 2024. RDMAG. 5. OMIM and dbVar. Accessed 10/19/2019

Initial Focus of Pediatric Genomic Medicine

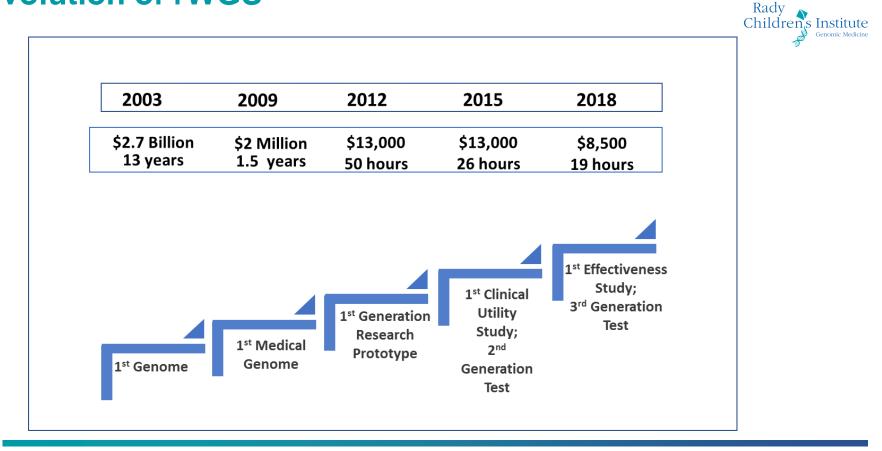
Rapid Whole Genome Sequencing



NICU: Opportunity for Biggest Impact

Comprehensive genetic testing

Timely, targeted treatment


Better patient outcomes

Focus: Infants in ICUs with diseases of unknown or incorrect aetiology

From: Willig et al 2015, Petrikin et al 2018, Farnaes et al 2018, Dimmock et al In Preparation

Evolution of rWGS

Medical literature consistently demonstrates clinical utility Rady

Children's Institute

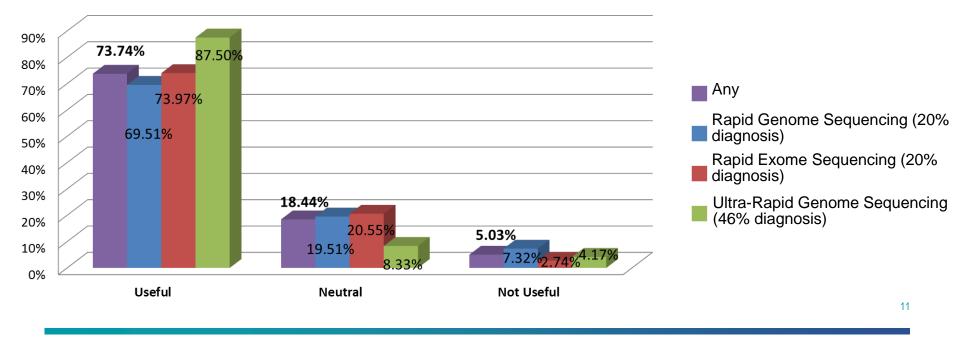
Average					880	33%	26%	14%		\$2,900
Baby Bear	2019	Cohort	rWGS	MediCal infants; within 1 week of admission; suspected genetic disease	132	43%	39%	In progress	3	\$3,300
Kingsmore/ Dimmock	2019	RCT	rWGS rWES urWGS	Infants; disease of unknown etiology; within 96 hours of admission	94 95 24	19% 20% 46%	24% 19% 54%	10%	11 11 5	In Progress
Clark	2019			Infants; Suspected genetic disease	7	43%	100%	n.d.	1	
French	2019			Suspected genetic disease	195	40 <i>%</i>	14%	n.d.	21	
Ceyhan-Birsoy Sanford	2019 2019	RCT Cobort		NICU neonates 4 months-18 years; PICU; Suspected genetic diseases	32 38	16% 48%	n.d. 39%	n.d. 8%	n.d. 14	
Mestek-Boukhibar	2018			Children; PICU and Cardiovascular ICU	24	42%	13%	n.d.	9	
Stark				Acutely ill children with suspected genetic diseases	40	53%	30%	8%	16	\$1,100
Farnaes	2018			infants; Suspected genetic disease	42	43%	31%	26%	23	\$3 <i>,</i> 500
Petrikin	2018	RCT	rWGS	<4 mo of age; Suspected genetic disease	32	41%	22%	n.d.	13	
van Diemen	2017	Cohort	rPanel	Infants; Suspected genetic disease	23	30%	22%	22%	12	
Meng	2017			<100 days of life; Suspected genetic disease	63	51%	37%	19%	13	
Willig	2015			<4 mo of age; Suspected actionable genetic disease	35	57%	31%	29%	23	
Saunders	2012	Cases	rWGS	NICU infants with suspected genetic disease	4	75%	n.d.	n.d.	2	
1 st Author	Date	Туре	Туре	NICU and PICU Enrollment Criteria	Size	Rate	Utility	Outcome	(d)	patient tested
et		Study	Seq			Dx	Clinical	Change in	ТАТ	Savings per

NICU: neonatal ICU; PICU: pediatric ICU; RCT: randomized controlled trial; rWES: Rapid exome sequencing; *£ saved per QALY

Rapid Precision Medicine can decrease cost of care

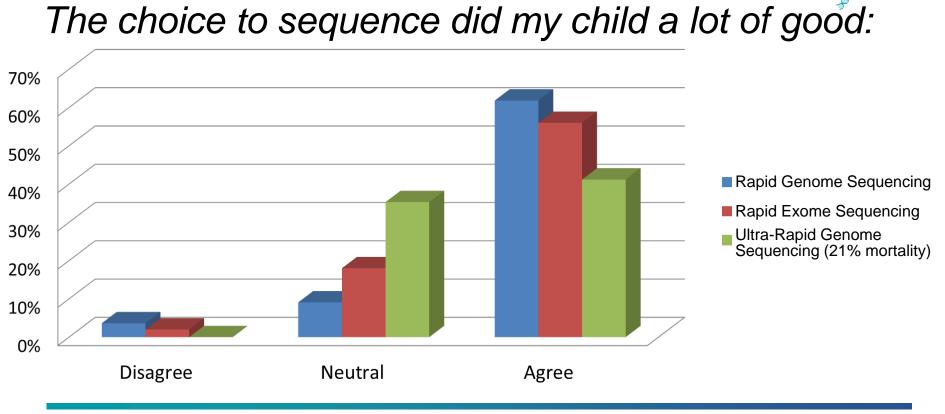
Effect of rWGS-based precision medicine on acute healthcare utilization in six infants and three matched controls

Subject ID	Presentation and modeled change in care	Gene	Time-to-diagnosis, days (method)	Hospital stay, Days	Decreased hospital stay, days (%)	Total cost	Cost avoided
6011	Cholestasis, 1 st admission for etiologic Dx Cholestasis, 2 nd admission for etiologic Dx	NPC1	7 (G)	8 15	15 (35%)	\$ 25,278 \$ 27,004	\$ 27,004
6012	Palliative care started DOL 250 Palliative care started DOL 292	ARID1B	26 (G)	250 292	42 (17%)	\$ 1,949,438 \$ 2,276,944	\$ 327,506
6014 Control 1	Hypotonia, Avoided EMG, GA, muscle biopsy Electromyogram, GA, muscle biopsy	NEB1	7 (G)	45	2 (6%)	\$ 156,914 \$ 9,900	\$ 9,900
6026 Control 2 Avg cost	Cholestasis and congenital heart disease Avoided hepatoportoenterosomy Kasai hepatoportoenterosomy Cost of liver transplant x 43% occurrence	JAG1	3 (G)	11	3 (18%)	\$ 50,327 \$ 44,451 \$ 87,344	\$ 131,795
6041	Seizures. Diagnosis DOL 4 Seizures. Diagnosis DOL 42	KCNQ2	4 (G) 42 (S)	18 59	41 (69%)	\$ 79,675 \$ 261,156	\$ 181,481
6053	Hypoglycemia. Diagnosis DOL 12 Hypoglycemia. Diagnosis DOL 32	ABCC8	7 (G) 28 (S)	10 31	21 (68%)	\$ 59,769 \$ 185,283	\$ 125,514
Healthcare	ngs			398			\$ 803,199
Cost of rWGS in 42 families						\$ 674,645	
Net healt savings						\$ 128,554	


Ongoing studies will answer the questions of how much RPM saves and how much it is generalizable

Farnaes et al 2018

Was rapid genome sequencing useful?


ClinicalTrials.gov NCT03211039

Exome sequencing: 1% of genome

Rapid: 12 days

Ultra-rapid: 2 days

So do parents

ClinicalTrials.gov NCT03211039

28-day mortality: Rapid genome and exome sequencing 1.6%

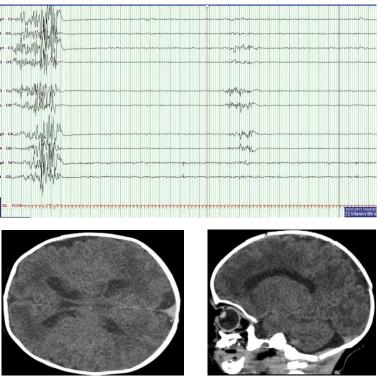
Rady

Children's Institute

Genomic Medicine

3pm, October 24, 2017 – NICU family 243

• 8-day-old of admitted from ER with *Status Epilepticus*


• History:

- 23-yo G2P1 healthy mother
- Fetal ventriculomegaly detected by ultrasound during pregnancy
- Delivery by uncomplicated C-section 39 1/7 weeks
- Breast-feeding well, discharged home on day of life 3

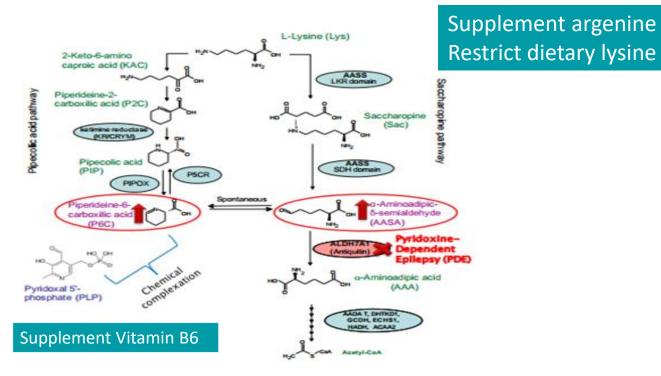
NICU family 243: Initial NICU Workup

- Electroencephalogram: seizures & background burst suppression
- Brain computed tomography: mild hypoplasia of cerebellum; Borderline lateral ventriculomegaly
- Infection workup: negative
- Cerebrospinal fluid lactic acid 6.3 mmol/L (normal 1.1-2.8)
- Serum creatinine kinase 1,195 U/L (normal 13-80, not in acute renal failure range)

Disease Progressed Overnight

- "Last night was rough with ongoing...multifocal seizures that continued despite...levetiracetam or phenobarbital"
 - Maximal anti-epileptic drugs
 - Worsening seizures
 - No response to phenytoin, carbamazepine
 - Midazolam drip increased until respiratory failure, emergent intubation
- "I discussed with his parents the range of outcomes I have seen with Neonatal Burst Suppression encephalopathy which usually entails limited life expectancy and at least moderate to severe developmental disabilities."

Diagnosis reported at 8pm October 27


- Disease: Pyridoxine-Dependent Epilepsy
- Gene: Aldehyde dehydrogenase 7 family member A1
- Inheritance Pattern: Autosomal Recessive
- Variants: 2 pathogenic variants

Genome variant (g.)	Gene variant (c.)	Protein v
Chr5 g.125,919,689C>T	ALDH7A1 c.328C>T	p.Arg1
Chr5 g.125887751C>G	ALDH7A1 c.1279G>C	p.Glu4

C=Cytosine; T=Thymidine; G=Guanine Arg=Argenine; Ter=Termination Codon; Gln=glutamine; Glu=glutamic acid

Glossary: Gene – a sequence of nucleotides in a genome that codes for a protein Recessive – A disease expressed in offspring only when inherited from both parents Protein variant (p.) p.Arg110Ter p.Glu427Gln

Step 11: Rapid Precision Medicine Guidance

Rady Children's Institute Genomic Medicine

Coughlin CR et al. Mol Genet Metab 2015 116:35

Impact of diagnosis 55 hours after consent

Following triple therapy with pyridoxine, L-arginine supplementation and dietary lysine restriction

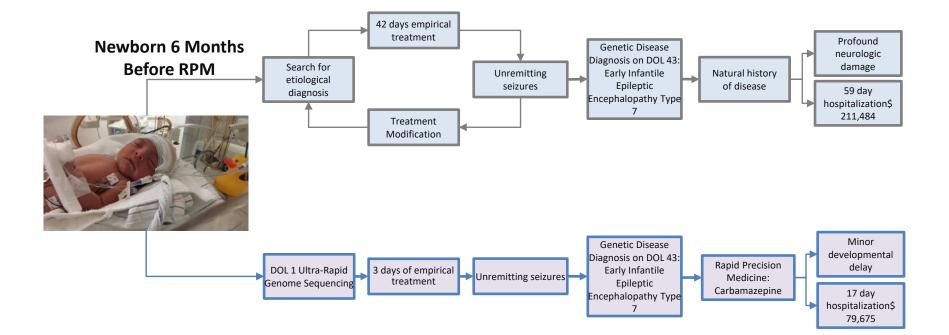
- Electroencaphalogram normalized
- Seizures stopped

Within 36 hours

- Extubated
- All anti-epileptic drugs stopped

Discharged Home

• Meeting milestones @ 22 months of age


Radv

Children's Institute

Genomic Medicine

The Rapid Precision Medicine Paradigm Applied to Neonatal Seizures

Current Barriers

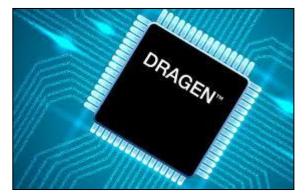
- Is the expense justified?
 - Is more needed?
- Genomic analysis time
 - Automated variant prioritization approaches
 - Artificial intelligence tools in development

- Limitations of genomic sequencing approaches
 - Polynucleotide repeats, regions with high homology, translocations
- Responsible consent and return of results
 - Education/outreach, collaboration with genetics services
- Decision support for molecular diagnoses
 - Education/outreach, medical fellow training

rWGS Interpretation Conundrum

Sequencing

Alignment/Variant Calling


Interpretation/Reporting

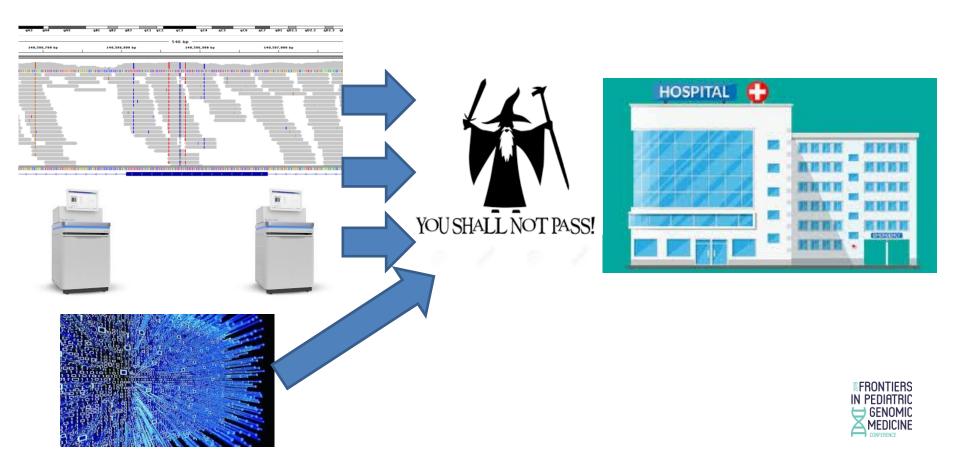
Still takes hours/days

Genomes sequenced in 17 hours

Genomes processed in 45 min

Why is it Taking so Long? Manual Process!!!

Steps in the Process
Initial Case Tracking - test type, family members
Phenotyping - HPO terms - gene lists
Case Creation
Variant selection/filtering
Curation of variants
Confirmation ordering
LD review/reporting
Report delivery
Verbal communication

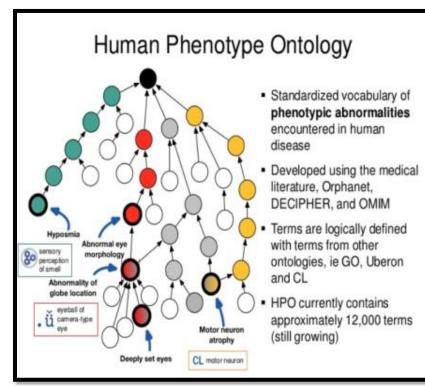

A lot to Interpret!

		ady ildrens Institute
Variant Type	Details	Genomic Medicine
Single Nucleotide Variants	>99.8% sensitivity	
Small Insertions/Deletions	Reported up to 40 bp	
Small Copy Number Variation	Down to 1 kb (187 bp finding this month!)	
Large Copy Number Variation	Microdeletion/duplication syndromes	
Aneuploidy	Whole chromosome (trisomy)	
SMN1 and SMN2 Copy Number	0,1,2, and >3 copies	
Mitochondrial Variants	Validated down to heteroplasmy levels of	
	1%	

Variant Type	Plans for Validation
Balanced translocations	Feasible for WGS data
Repeat expansions	Myotonic dystrophy screening
Intronic variants	Assessing current tools
Mosaic Copy Number Variants	Validation planning underway
Robust/automated UPD calling	Gathering truth samples

Role of the Laboratory Director in the rWGS Era

GENETIC DIAGNOSIS


Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation

Michelle M. Clark¹, Amber Hildreth^{1,2,3}, Sergey Batalov¹, Yan Ding¹, Shimul Chowdhury¹, Kelly Watkins¹, Katarzyna Ellsworth¹, Brandon Camp¹, Cyrielle I. Kint⁴, Calum Yacoubian⁵, Lauge Farnaes^{1,2}, Matthew N. Bainbridge^{1,6}, Curtis Beebe⁷, Joshua J. A. Braun¹, Margaret Bray⁸, Jeanne Carroll^{1,2}, Julie A. Cakici¹, Sara A. Caylor¹, Christina Clarke¹, Mitchell P. Creed⁹, Jennifer Friedman^{1,10}, Alison Frith⁵, Richard Gain⁵, Mary Gaughran¹, Shauna George⁷, Sheldon Gilmer⁷, Joseph Gleeson^{1,10}, Jeremy Gore¹¹, Haiying Grunenwald¹², Raymond L. Hovey¹, Marie L. Janes¹, Kejia Lin⁷, Paul D. McDonagh⁸, Kyle McBride⁷, Patrick Mulrooney¹, Shareef Nahas¹, Daeheon Oh¹, Albert Oriol⁷, Laura Puckett¹, Zia Rady¹, Martin G. Reese¹³, Julie Ryu^{1,2}, Lisa Salz¹, Erica Sanford^{1,2}, Lawrence Stewart⁷, Nathaly Sweeney^{1,2}, Mari Tokita¹, Luca Van Der Kraan¹, Sarah White¹, Kristen Wigby^{1,2}, Brett Williams⁵, Terence Wong¹, Meredith S. Wright¹, Catherine Yamada¹, Peter Schols⁴, John Reynders⁸, Kevin Hall¹², David Dimmock¹, Narayanan Veeraraghavan¹, Thomas Defay⁸, Stephen F. Kingsmore^{1*}

Phenome + Genome

Deep Phenotyping by Natural Language Processing of Epic EMR: 20 sec

_ IXENRICH Welcome back mclark3@rchsd.org (rchsd Administrator)

0

Ŋ

Ç

£3

00

ዯ

÷

)	Home	nervous system (100%) HP0001041 Facial erythema (100%)
		HP0001041 Pacial erythema (100%) HP0001250 Seizures (100%)
	Import Records	
	Import Records	HP0001298 Encephalopathy (100%)
,		HP0001336 Myoclonus (100%)
\$	Manage Filters	HP0001438 Abnormality of
		abdomen morphology (100%)
>	Run Jobs	HP0001941 Acidosis (100%)
		HP0001942 Metabolic acidosis
5	View Results	(100%)
K	VIEW RESULTS	HP0002011 Morphological
		abnormality of the central nervous
	Interactive Testpad	system (100%)
		HP0002060 Abnormality of the
1	View Status	cerebrum (100%)
		HP0002329 Drowsiness (100%)
		HP0002353 EEG abnormality (100%)
)	Manage API Keys	HP0002373 Febrile seizures (100%)
		HP0002521 Hypsarrhythmia (100%)
	Logout	HP0002527 Falls (100%)
		HP0002790 Neonatal breathing
		dysregulation (100%)
		HP0002928 Decreased activity of the
		pyruvate dehydrogenase complex
		(100%)
		HP0003128 Lactic acidosis (100%)
		HP0004305 Involuntary movements

10 mg 110 depending on kidney functionstep 3: Keload levetiracetam 20 mg/kg and then maintenance of 45 mg/kg divided but or 15 mg TID depending on kidney functionStep 6 Reload Dilantin 20 mg/kg and start IV maintenance 5 mg/kg/day divided BID for a goal level of 10Step 7: Initiate a midazolam dripStep 8: Consider topiramate or lacosamide2) Metabolic testing:Urine organic acidsSerum amino acidsPlasma acylcarnitine profileAmmonia, lactateFrom a metabolic standpoint, there are a number of timedependent, treatable conditions that need to be addressed including:1) Vitamin dependent epilepsies including Pyridoxinedependent seizures Pyridoxal 5 phosphate dependent seizures and biotinidase deficiency.--Children with these conditions and others need specific vitamin supplementation a soon as possible to prevent permanent brain injury (for example, pyridoxine, PSP, biotin)2) Transporter disorders including GLUT1 deficiency and cerebral folate deficiency--Children with GLUT1 need the ketogenic diet started as soon as possible to prevent long-term disability. Folate supplementation may help children with cerebral folate deficiency. CSF glucose and folate levels should be sent in children with refractory epilepsy and no identified cause of seizures? Amino and organic acidopathies, most notably maple syrup urine disease - Dietary avoidance may be required in some conditions. Metabolic testing including newborn screening, urine organic acids, plasma amino acids, serum acylcarnitine profile are needed in all children with seizures and no identified cause.4) Mitochondrial disorders, most notably Leigh's disease and pyruvate dehydrogenase deficiency. All children with seizures and no identified cause should have serum and CSF lactate and pyruvate testing. Treatment may include vitamins and supplements such as co-enzyme Q10.5) Urea cycle defects. All children with seizures and no identified cause should have serum ammonia testing. Dietary avoidance may be needed.6) Neurotransmitter disorders. All children with refractory seizures and no identified cause should have CSF neurotransmitters sent, including CSF biopterin.3) Genetic testing: CGH genetic panel, genetics instituteFrom a genetic standpoint, there is a growing list of neonatal onset that have been identified, some with specific treatments. Recent series have found diagnosable genetic epilepsies in 12% (EuroEPINOMICS-RES Consortium, Am J Hum Gen, 2014), 18% (Trump et al, J Med Genet 2016), 23% (Moller et al, Mol Syndromol, 2016), 28% (Mercimek-Mahmutoglu et al, Epilepsia 2015), to 33% (Heibig et al., Genet Med, 2016) in patients with no clear provoking cause of seizures. Many of those source report their highest yield in neonatal seizures; in the Trump study, the overall hit rate was 18% but the neonatal hit rate was 39%, while the Hieberg study had a hit rate of 43% in children with epileptic encephalopathy. Most common were the SCN family of mutations, STXBP1 and the KCNQ family of genetic epilepsie Most importantly, identification of these genetic epilepsies can have profound implications for immediate and long-term clinical care. For example, one review (Poduri et al, Nat Rev Neurol, 2014) included the table below showing how specific mutations influence care: From our experience and discussion with other providers (especially utilizing data from Dr. Poduri), we recognize AT LEAST the following mutations that may influence care:Gene TreatmentALDH7A1 PyridoxineGRIN2A Memantine (potentially)KCNQ2 Ezogabine (potentially)KCNT1 Quinidine (potentially)PLCB1 InositoIPNPO Pyridoxal-5-phosphatePRRT2 CarbamazepineSCN1A Avoid phenytoin and lamotrigineSCN2A

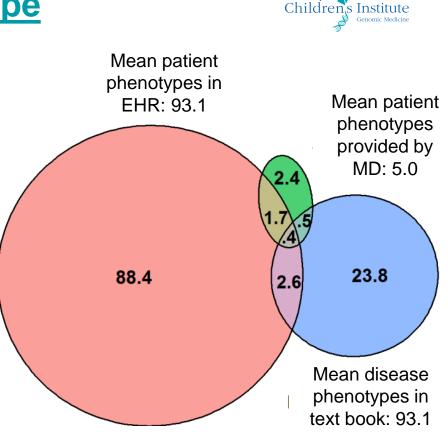
Clinithink Exchange

Radv

Dark UI

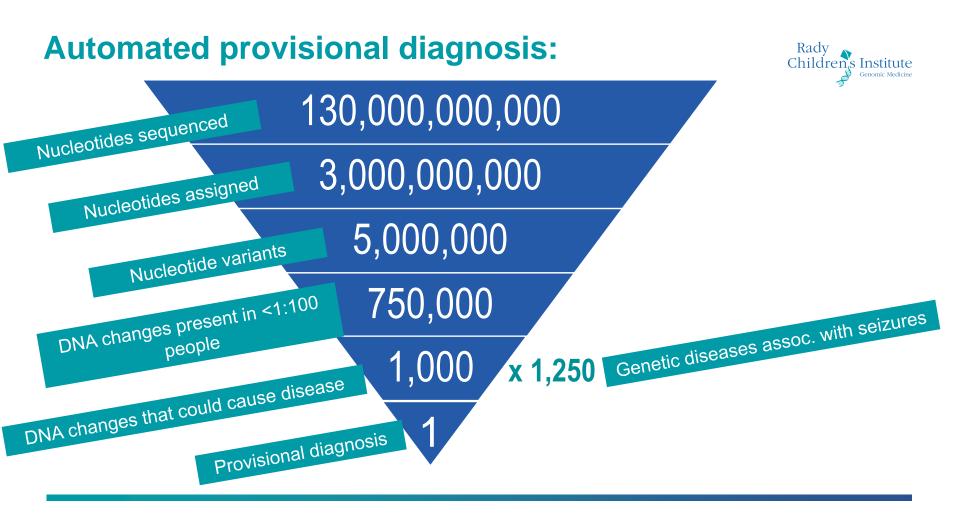
Children's Institute

Genomic Medicine


Fullscreen

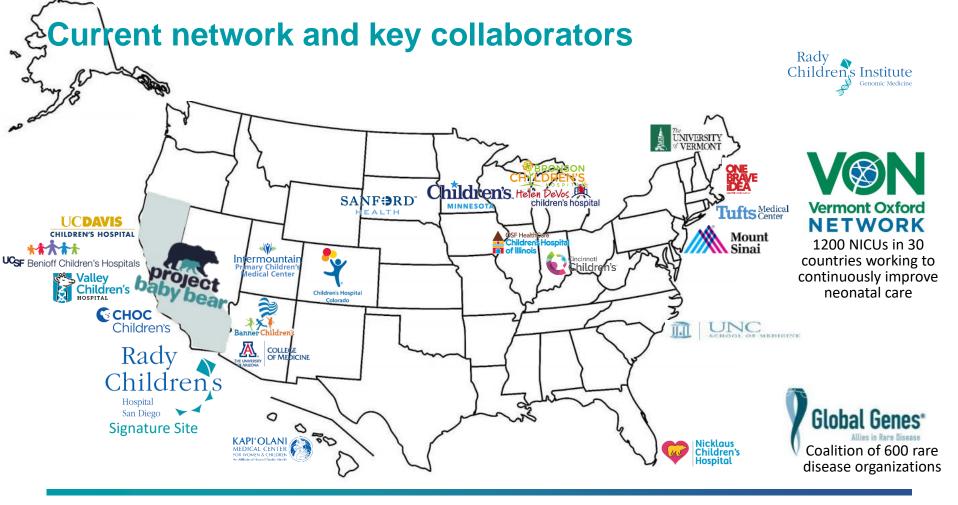
Liaht UI

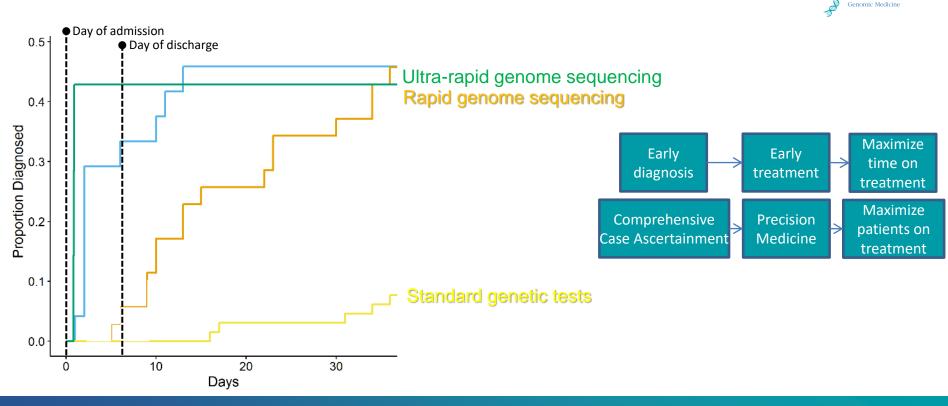
CliniThink CLiXENRICH natural language processing software


Why collect a deep phenotype

- The clinical features of NICU infants do NOT correspond well with classical descriptions of their disease
- The ability to make a diagnosis is critically dependent on a full clinical description

Rady


76 children with genetic diseases; natural language processing of EHR; Text book: Mendelian Inheritance in Man


Next Steps and Where Does Al/NLP Come in?

Steps in the Process	Automation/NLP
Initial Case Tracking - test type, family members	AUTOMATION
Phenotyping - HPO terms - gene lists	NLP/AI
Case Creation	AUTOMATION
Variant selection/filtering	AUTOMATION
Curation of variants	NLP/AI
Confirmation ordering	AUTOMATION
LD review/reporting	NLP
Report delivery	AUTOMATION
Verbal communication	NLP/AI – RPM GUIDANCE

Early, comprehensive diagnosis with therapy guidance will increase orphan drug markets

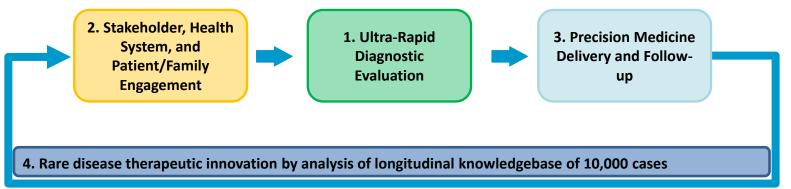
urWGS ordered on the day of admission with 1-2 day time to result is optimal

Rady

Children's Institute

We are developing a healthcare delivery system for national implementation of Rapid Precision Medicine

- Engages all stakeholders
- Genomic consult service
- Conext-specific implementation
- Simplified, non-expert ordering
- Automated deep phenotype extraction


- 1 day to result
- Semi-automated interpretation
- 3,000 cases / year
- State-of-the art diagnostic performance
- Results effectively communicated to non-expert ICU teams & parents

Rady

Children's Institute

Genomic Medicine

- Management guidance to change Rx before discharge
- Implications understood by parents
- Precision medicine follow-up clinic

Acknowledgements: A Deo lumen, ab amicis auxilium

Executive Team

Stephen Kingsmore MD, DSc Wendy Benson Charlotte Hobbs, MD, PhD David Dimmock MD

Leadership

Shimul Chowdhury PhD, Yan Ding MD, MS Kasia Ellsworth PhD, FACMG Lauge Farnaes MD, PhD Karen Garman EdD, MAPP Shareef Nahas PhD Julie Reinke Grace Sevilla, APR Mari Tokita MD Ray Veeraraghavan PhD Russell Nofsinger, PhD

Illumina

Kevin Hall Haiying Grunenwald

Clinical Genome Center

Zaira Bezares Jennie Le Maria Ortiz-Arechiga Laura Puckett Luca Van Der Kraan Catherine Yamada

Genome Analysts

Michelle Clark PhD Kiely James PhD Terence Wong PhD Meredith Wright PhD

Clinical Trial Team

Sara Caylor RN, BSN Christina Clarke RN, BSN Mary Gaughran RN Jerica Lenberg MS, LCGC Lisa Salz MS, LCGC Kelly Watkins MS, LCGC

Clinicians / Researchers

Matthew Bainbridge PhD Jeanne Carroll MD Tina Chambers PhD Michele Feddock, CCRP Jennifer Friedman MD Joseph Gleeson MD, PhD Iris Reves Jonathan Sebat PhD Nathaly Sweeney MD Robert Wechsler-Reva PhD Kristin Wigby MD Amelia Lindgren, MD Erica Sanford, MD Kate Perofsky, MD Kathy Bouic Linda Luo Lauren Curley, PhD

Information Technology

Josh Braun Serge Batalov Carlos Diaz Raymond Hovey PhD Dana Mashburn Patrick Mulrooney, MAS Danny Oh Albert Oriol Dorjee Tamang Daniken Orendain

Administration

Amanda Abbott Esq Christine Moran Ellen Montgomery Olivia Simonides Stacey Huynh Sylvia Breeding Rachel Burgess Joey Principato Leila Schwanemann Cheyenne Camp Bryce Waldman

Collaboration with:

Rady Children's Hospital State of California UC San Diego Health Illumina, Inc. Diploid, Inc. Alexion Pharmaceuticals National Institutes of Health

- NICHD
- NHGRI
- NIDDK

The Liguori Family John Motter and Effie Simanikas Ernest and Evelyn Rady

