Secondhand Smoke Exposure and Neuromotor Performance in Appalachian Children

Samrat Yeramaneni, MBBS, MS
PhD Candidate
Department of Environmental Health
University of Cincinnati
E-mail: yeramas@mail.uc.edu
Secondhand Smoke Exposure in Children

- **Worldwide**
 - 40% of children
 - 35% of women
 - 33% of men

- **In the U.S**
 - 53.6% (~19 million) children aged 3-11 years

- **In Appalachian communities**
 - 12.1% vs. 8% nationally
 - 16.1 in urban vs. 10.2 rural

Strong Evidence of SHS and Adverse Neurobehavior in Children

• Neurobehavioral outcomes
 – Learning disabilities
 – ADD/ADHD
 – Conduct disorders
 – Cognitive and academic achievement deficits

• Prevalence in Appalachian children
 – 21% vs. 13% nationally

• “Motor overflow” in children with ADHD

Primary Research Question?

• Does SHS negatively impact neuromotor performance in children?
Marietta Community Actively Researching Exposure Study (CARES)
Study Cohort
7-9 years
N = 407

Marietta, OH/Parkersburg, WV
n = 327

Cambridge, OH
n = 80

Home Environmental Sampling
- Composite Home Dust
- Soil
- Drinking Water

Ambient Air Sampling
- PM$_{2.5}$ 6 days/week
- 4 weeks/season

Personal Air Sampling
N = 40

Neuropsychological Assessment
- Child IQ (WISC-IV)
- BASC-2
- CVLT-C
- Standardized Achievement Test

Neuromotor Assessment
- Grooved Pegboard
- Fingertapping
- Postural Balance n=55

Biological Measures
- Whole Blood: Pb, Mn, Cd, Hg
- Serum: Cotinine, Ferritin, transferrin, TIBC
- Hair: Mn
- Tooth: Mn (prenatal and postnatal)
- Toe Nails

Neuropsychological Assessment
- Child IQ
- BASC-2
- CVLT-C
- Standardized Achievement Test

Neuromotor Assessment
- Grooved Pegboard
- Fingertapping
- Postural Balance n=36
Neuromotor Function Tests

• Halsted Finger Tapping Task
 – Simple motor speed

• Purdue Grooved Pegboard Test
 – Manual dexterity

• Bruininks-Oseretsky Test of Motor Proficiency – 2 (BOT-2)
 – Fine manual control, manual coordination, body coordination, and strength
Characteristics of Study Cohort

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Reported Smoking in Household</th>
<th>N=40</th>
<th>No Reported Smoking in Household</th>
<th>N=40</th>
<th>P -value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>8.24 (0.85)</td>
<td></td>
<td>8.41 (0.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>22 (55%)</td>
<td></td>
<td>29 (72.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>18 (45%)</td>
<td></td>
<td>11 (27.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>33 (82.5%)</td>
<td></td>
<td>37 (92.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent IQ</td>
<td>94.28 (14.96)</td>
<td></td>
<td>103.85 (10.94)</td>
<td></td>
<td>< 0.05</td>
</tr>
<tr>
<td>Parent Education</td>
<td>12.27 (2.37)</td>
<td></td>
<td>14.97 (2.26)</td>
<td></td>
<td>0.78</td>
</tr>
<tr>
<td>Number of cigs/day/household</td>
<td>21.58 (11.92)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum cotinine (µg/L)</td>
<td>2.67 (2.51)</td>
<td></td>
<td>0.24 (0.37)</td>
<td></td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Blood lead (Pb) (µg/dL)</td>
<td>1.25 (0.67)</td>
<td></td>
<td>0.87 (0.5)</td>
<td></td>
<td>0.14</td>
</tr>
</tbody>
</table>
Serum Cotinine and Covariates

Pearson Correlations

<table>
<thead>
<tr>
<th>Primary Independent Variable</th>
<th>Covariates</th>
<th>Correlation</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum cotinine</td>
<td>Age_yrs</td>
<td>-0.15</td>
<td>0.2996</td>
</tr>
<tr>
<td></td>
<td>Cigs/day/household</td>
<td>0.56</td>
<td><.0001</td>
</tr>
<tr>
<td></td>
<td>Parent IQ</td>
<td>-0.49 ⭐</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>Parent Education</td>
<td>-0.67 ⭐</td>
<td><.0001</td>
</tr>
<tr>
<td></td>
<td>Blood Pb</td>
<td>0.53</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Finger Tapping Test

Pearson Correlations

<table>
<thead>
<tr>
<th>Finger Tapping</th>
<th>Covariates</th>
<th>Correlation</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Hand</td>
<td>Serum Cotinine</td>
<td>-0.25</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Age_yrs</td>
<td>0.468</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Blood Pb</td>
<td>-0.362</td>
<td>0.007</td>
</tr>
<tr>
<td>Left Hand</td>
<td>Log Cotinine</td>
<td>-0.306</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Age_yrs</td>
<td>0.542</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Blood Pb</td>
<td>-0.311</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Grooved Pegboard Test

Pearson Correlations

<table>
<thead>
<tr>
<th>Grooved Pegboard</th>
<th>Covariates</th>
<th>Correlation</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant Hand</td>
<td>Serum Cotinine</td>
<td>-0.306</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Age_yrs</td>
<td>0.542</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Cigs/day/household</td>
<td>-0.264</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Blood Pb</td>
<td>-0.311</td>
<td>0.02</td>
</tr>
<tr>
<td>Non-Dominant Hand</td>
<td>Serum Cotinine</td>
<td>0.231</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Age_yrs</td>
<td>-0.279</td>
<td>0.01</td>
</tr>
</tbody>
</table>
BOT-2 Test

Pearson Correlations

<table>
<thead>
<tr>
<th>BOT – 2 (Composite Score)</th>
<th>Covariates</th>
<th>Correlation</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine motor precision</td>
<td>Serum Cotinine</td>
<td>-0.323</td>
<td>0.01</td>
</tr>
<tr>
<td>Fine motor integration</td>
<td>Age_yrs</td>
<td>0.486</td>
<td><0.001</td>
</tr>
<tr>
<td>Manual dexterity</td>
<td>Cigs/day/household</td>
<td>-0.28</td>
<td>0.01</td>
</tr>
<tr>
<td>Bilateral Coordination</td>
<td>Parent IQ</td>
<td>0.204</td>
<td>0.07</td>
</tr>
<tr>
<td>Balance</td>
<td>Parent Education</td>
<td>0.372</td>
<td>0.001</td>
</tr>
<tr>
<td>Running speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper-limb coordination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finger Tapping Test
Multivariable Regression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Cotinine</td>
<td>-0.03</td>
<td>0.42</td>
<td>0.93</td>
</tr>
<tr>
<td>Age_yrs</td>
<td>2.30</td>
<td>0.87</td>
<td>0.01</td>
</tr>
<tr>
<td>Blood Pb</td>
<td>-3.35</td>
<td>1.42</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Right Hand
R-square 0.27

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Cotinine</td>
<td>0.03</td>
<td>0.44</td>
<td>0.94</td>
</tr>
<tr>
<td>Age_yrs</td>
<td>3.62</td>
<td>0.87</td>
<td>0.01</td>
</tr>
<tr>
<td>Gender</td>
<td>4.53</td>
<td>1.24</td>
<td>0.0007</td>
</tr>
<tr>
<td>Blood Pb</td>
<td>-3.35</td>
<td>1.42</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Left Hand
R-square 0.49
Grooved Pegboard Test

Multivariable Regression

Dominant Hand
R-square 0.16

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Cotinine</td>
<td>1.28</td>
<td>0.67</td>
<td>0.06</td>
</tr>
<tr>
<td>Age_yrs</td>
<td>-3.42</td>
<td>1.61</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Non-Dominant Hand
R-square 0.18

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Cotinine</td>
<td>1.74</td>
<td>0.90</td>
<td>0.05</td>
</tr>
<tr>
<td>Age_yrs</td>
<td>-3.88</td>
<td>2.12</td>
<td>0.07</td>
</tr>
<tr>
<td>Gender</td>
<td>6.71</td>
<td>3.55</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Multivariable Regression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Cotinine</td>
<td>0.05</td>
<td>13.56</td>
<td>0.99</td>
</tr>
<tr>
<td>Age_yrs</td>
<td>4.93</td>
<td>1.17</td>
<td>0.0001</td>
</tr>
<tr>
<td>Parent Education</td>
<td>1.29</td>
<td>0.46</td>
<td>0.007</td>
</tr>
<tr>
<td>Blood Pb</td>
<td>3.15</td>
<td>1.87</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Conclusions

• 50% of parents reported at least one smoker in the household.
• Mean number of cigs/day/house – 22 cigs/day/house.
• Significantly strong *unadjusted* correlations between serum cotinine and….
 – Cigs/day/house, parent IQ, and parent education
• Overall, older children performed better on neuromotor tests.
• Girls performed better in manual dexterity test, while boys in simple motor speed.
• Blood Pb was also significantly associated with poor neuromotor performance.
Future Directions

• Compare neuromotor performance in children with and without detectable levels of serum cotinine.
• Explore the role of SES and SHS exposure with neuromotor performance.
• Explore the relationship between SHS exposure and school achievement using standardized school testing.
Acknowledgements

University of Cincinnati
Erin Haynes, DrPH, MS
Kim Dietrich, PhD
Amit Bhattacharya, PhD
Paul Succop, PhD
Tina Reponen, PhD
Cyndy Cox
Jody Alden
Pierce Kuhnell
Megan Parin

Marietta College
Mary Barnas, PhD
David Brown, PhD

Clinic Team:
Ashley Schaad
Philip LeMaster
Mark Jackson
Andy Guimond
Kristin Lutes

Channing Trace Metals Laboratory, Boston
Robert Wright, MD

Wadsworth Center, New York
Patrick Parsons, PhD
Meredith Praamsma, PhD candidate
Christopher Palmer, PhD

Marietta, & Cambridge, Communities
Caroline Beidler, Marietta
Arthur Wittberg, PhD Marietta
Dawn Wittberg, Marietta
Rusty Roberts, Cambridge

Community Advisory Board

Funding Support by the National Institute of Environmental Health Science and CEG-NIS
1R01 ES016531-01; 5T32ES10957, R01ES016531, R03 HD059615-01, and P30-ES06096.
NIEHS P30-ES006096

Cincinnati Children’s Hospital Medical Center
Patrick Ryan, PhD
Nicholas Newman, DO, MS

Students/Postdoctoral fellow
Pam Heckel, PhD
Fedoria Rugless

Clinic Team:
Ashley Schaad
Philip LeMaster
Mark Jackson
Andy Guimond
Kristin Lutes

Home Sampling Team:
John St. Marie
Velvet Tranchina
Russelita Young
Derek Hennen
Callie Lyons
Diana Hackenberg
Anthony Derotto
Ryan Ellis
Corin Bonnett

Marietta College
Mary Barnas, PhD
David Brown, PhD